Humanitarian Engineering for Development Workers ERE 496 Matthew Montanaro discusses solutions to help reach Millennium Development Goals 4, 5 and 6.

The article “Humanitarian drones to deliver medical supplies to roadless areas” released by the guardian on March 30, 2014 explains the idea of using drones to carry up to 2 kg of life saving packages to areas that are unreachable by road. This would be especially useful in places like sub-Saharan Africa were 85% of roads are not usable during the wet season. The people living in this area are cut off from the ability to get medical supplies during this season. The facts in this article seem correct but there aren’t really much of them. They can improve the facts by just including more information about the areas this would be used in. A very small amount of information is given and this can be misleading. The project is estimated to cost 6,000 pound for each UAV and 3,000 pound for each ground system. Right now I feel that the cost for the system is too high for it’s gains. Each drone would only be able to fly 10 miles at a time so in order to cover a lot of ground a lot of drones and ground stations would have to be created. Infrastructure may not even be in place to charge these drones in the villages that need them. In the future this kind of technology could be valuable for the communities but right now there are better uses of money to help undeveloped communities rather than getting drones. The required labor wouldn’t be difficult for communities because once the system is in place there isn’t much that would have to be done to maintain it. The most important thing would be tp see if communities have the utilities available to power the drones and if this is worth the use of the power. For undeveloped communities this technology would not be culturally appropriate. People would probably not adapt to using the system very quickly and it doesn’t really make sense to have a drone when improved bathrooms and water supplies are still needed. The design of the project requires a ground station every 10 miles and would ultimately have villages sending and trading supplies between themselves. I think that the design would be more realistic if the drones could carry a heavier payload and fly longer distances but in life and death situations this system could definitely save lives because of the accuracy and quickness of delivering medicine.

This system would be able to help combat diseases, child mortality and maternal health due to the swift delivery of medicines and vital supplies. There are many of areas in developing and undeveloped countries where during the rainy season roads are inaccessible. Just because the roads can’t be traveled doesn’t mean that diseases and sicknesses will take a break. A system like this could ensure that people in all areas can get the treatment that they need for any kind of illness or disease. This article shows how much of a burden caring for a relative with AIDS is for that persons relatives It hurts the family economically, physically and emotionally. With the use of the proposed system, correct medicine would be able to be provided for diseases like AID’s without family members having to travel to go get it.

A more simple solution that could work instead of this complicated system could be a more developed distribution of medicine during the dry season. Communities could be  given stocks of medicine for diseases and sicknesses prevalent in the area so when someone does fall ill they will already have the supplies to fight it. With the prices being spent on the drones and the ground stations a lot more medicine could be purchased and kept in the communities. This would overall cost less because although they are buying more medicine they do not have to pay for the medicine on top of paying for the drones. This would cause more planning and spending in the dry season to make sure they are prepared for the wet season and somebody in the village must travel to whichever closest place has the medicine available. This would definitely fit the cultures of developing communities much better. The most important part of this design would be to have effective planning before the wet season.

Figure I- Inventor (left) with a sample drone (right)

Figure I- Inventor (left) with a sample drone (right)




Gilson, Lucy, and Anne Mills. “Health Sector Reforms in Sub-Saharan Africa: Lessons of the Last 10       Years.” Health Policy 32.1-3 (1995): 215-43. Web.

Goodman, Catherine, et al. “Medicine Sellers and Malaria Treatment in Sub-Saharan Africa: What Do They Do and How Can Their Practice Be Improved?” The American Journal of Tropical Medicine and Hygiene. 32.6 (2007): 203-18. Web.

Hickey, Shane. “Humanitarian Drones to Deliver Medical Supplies to Roadless Areas.” The Guardian.    Guardian News and Media, 31 Mar. 2014. Web. 28 Apr. 2014.