Water Resources Engineering (WRE) connects engineering hydrology and hydraulics with global, economic, environmental, and societal issues. Our student Tom Arcuri makes this connection here…

On March 6, 2013 The New York Times reported the article, “Proposed Dam Presents Economic and Environmental Challenges in Alaska” on their online site. The news encompasses the WRE domain of Hydrology and Hydraulics, particularly related to dams and their impacts. This article goes into detail about the debate currently taking place in the state of Alaska over the installation of a hydroelectric dam on the Susitna River. The high price of power for Alaskans raises the debate over which energy production methods should be implicated in order to create the most beneficial outcome for the state, its residence, and its wildlife. This article implies that the choice between utilization of the state’s natural gas resources and construction of the dam on the Susitna will be a difficult one to make. Currently, the Alaskan Energy Authority is conducting and reviewing studies for the project and will soon ask for a license to build the dam from the Federal Energy Regulation Commission. Using the following research citations and my engineering education, my informed opinion on the accuracy of the WRE facts presented by The New York Times in this article are accurate. Levin and Tolimieri (2001) reinforced the adverse hydrologic impacts created by dams on salmonids and riverine ecosystems. Berkun (2010) puts hydroelectric potential in perspective in terms of water resources availability, as well as potential negative impacts and the importance of studying them. Based on critically thinking through the information provided by this article, I believe that it has missed the opportunity to use historically similar events to support each argument. Analyzing similar scenarios where hydropower was implicated over alternative methods could have provided insight on the rational for the dam and potential positive and negative outcomes that have already been seen. More consideration using case studies from previously constructed dams would aid in the decision of Alaska’s energy future.

The hydrologic and hydraulic applications of water resources engineering shape the economic, environmental, and social impacts of water on a local and global scale. The Susitna dam deals with all three of these WRE context areas. Environmental impacts, economic feasibility and return, and public of opinion and land use will all be impacted by the decision to construct the dam or not. Alteration to the natural river flow, blockage of upstream passage, warming water temperatures, and lack of sediment and nutrient flow will all affect the five species of pacific salmon that spawn in the Susitna. The reservoir created behind the dam will also lead to massive habitat loses for terrestrial animals and can create greenhouse gas emissions. Damming the river will create a large amount of clean power for Alaskans, but the initial investment is high, thus offsetting savings. The dam could also create recreational opportunities behind the reservoir, but alter fishing and recreation elsewhere. Public opinion also varies between those who support hydroelectric or natural gas and also those who believe which alternative is best to keep the land natural and pristine. Based on this article, the social and economic benefits of the Susitna dam will need to outweigh the adverse environmental impacts caused by the dam in order for it to be an option for energy production. The positives and negatives of hydroelectric power generation are reported by Von Sperling (2012), who explains how hydropower fits into today’s global energy needs. However, Von Sperling (2012) emphasizes that the benefits of hydropower should outweigh the environmental effects when considering implementation of each hydroelectric dam project. The cause-effect between construction of the Susitna dam and the environmental, social, and economic impacts is that hydroelectric power will provide a large amount of the energy needed in the state of Alaska while adverse environmental conditions are inevitable and potential irreversible.


Figure 1: An artist’s rendition of the proposed hydroelectric dam on the Susitna River. Studies are being conducted to determine the fate of the project based on the benefits and negative impacts.


Figure 2: Before and after pictures of Yosemite Nation Park’s Hetch Hetchy valley. The need for water in San Francisco called for construction of the reservoir and altered the Tuolumne River.


URL: http://www.nytimes.com/2013/03/07/science/earth/proposed-dam-presents-twin-conundrums-in-alaska.html?_r=0


Berkun, M. Hydroelectric potential and environmental effects of multidam hydropower projects in Turkey. Energy for Sustainable Development. 2010; 14(4), 320–329. doi:10.1016/j.esd.2010.09.003

Levin, P. S., & Tolimieri, N. Differences in the impacts of dams on the dynamics of salmon populations. Animal Conservation. 2001; 4(4), 291–299. doi:10.1017/S1367943001001342

Von Sperling, E. Hydropower in Brazil: Overview of Positive and Negative Environmental Aspects. Energy Procedia. 2012; 18, 110–118. doi:10.1016/j.egypro.2012.05.023